
Brief communication

On the in¯uence of mass transfer on coalescence of
bubbles

A.M. Leshansky

Department of Chemical Engineering, Technion - I.I.T., Haifa 32000, Israel

Received 4 August 1997; received in revised form 28 December 1999

1. Introduction

The contact area between disperse and continuous ¯uids is one of the key parameters
controlling mass transfer in numerous technological operations. Since the disperse phase size
distribution is mainly a result of the disperse phase ¯uid particle coalescence the modeling of
that phenomenon becomes particularly important. As reported, the critical gas ¯ow in the
bubble columns, at which ¯ow transition from bubble ¯ow to recirculating turbulent ¯ow
occurs, can be correlated with coalescence time (Ueyama et al., 1993). It is known for some
years that the direction of solute mass transfer can be responsible for the drastic change in the
rate of coalescence between liquid drops immersed into the continuous phase ¯uid (see
Groothuiz and Zuiderweg, 1960; Je�reys and Lawson, 1965; Gourdon and Casamatta, 1991).
The main conclusion from these experimental works can be formulated as follows: a
progressive decrease in drops stability was noticed in the case of increased di�usion rate from
the drops, whereas a progressive increase in stability was shown to occur where di�usion takes
place into the drops for increasing rates of solute mass transfer. Velev et al. (1993) observed a
spontaneous cyclic phenomenon of dimple formation in aqueous emulsion ®lms accompanied
by interphase mass transfer. In these experiments a dilute nonionic surfactant was transferred
from the aqueous emulsion ®lm toward the surrounding oil phases. The process of dimpling
goes for hours until the surfactant distribution is equilibrated, then the ®lm quickly thins and
ruptures. Recently, Danov et al. (1997) proposed a hydrodynamic description for the above
phenomenon of spontaneous dimpling based on a lubrication theory, which can predict
satisfactorily the ®nal steady shape of a dimple, but does not re¯ect the cyclic nature of
dimpling. It was shown that the Marangoni e�ect is responsible for the dimple growth and,
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thus, for the high stability of non-equilibrium emulsion ®lms that are accompanied by outward
surfactant transfer.
The onset of the Marangoni instability due to solute transport has been studied extensively

for the case of single interface liquid±liquid or liquid±gas systems (Sternling and Scriven, 1959;
England and Berg, 1971; Sorensen et al., 1977; Hennenberg et al., 1977; and recently Slavtchev
et al., 1998), while it has not been studied in detail for the case of multiple interface systems.
The aim of this paper is to develop a simpli®ed theoretical description which will be able to

explain the di�erence in relative stability of inter-particle liquid ®lm due to the direction of
mass transfer. A simple hydrodynamic model is derived and studied by means of a linear
stability analysis of a narrow ¯at layer of liquid between two semi-in®nite gas phases. A
surface active solute is assumed to cross the interface either from the gas phase into the liquid
layer or vice versa.
This model can be addressed to coalescence of two bubbles under a number of simplifying

assumptions. First, the hydrodynamic interaction between bubbles during their approach is
neglected. In fact, when the separation distance, d, between the bubbles tends to zero, the
viscous force acting on them grows fast and the velocity of their approach tends to zero as d 1=2

in the limit of high surface tension (Lavrenteva et al., 1999). Second, the narrow liquid ®lm
which develops between the deformed bubbles is regarded as a plain sheet.
Recent experiments on bubble coalescence, using laser measuring technique by Ueyama et al.

(1993) con®rm that the approach velocity and bubble size (i.e., curvature e�ects) have only a
minor e�ect on the coalescence time, while the initial solutal distribution between bubbles and
surrounding liquid phase has a strong in¯uence on it.

2. Problem formulation

Consider a quiescent two-dimensional layer of incompressible liquid which is in®nite in
horizontal direction and bounded vertically by the two free liquid±gas surfaces. The width of
the layer is h0, the surface tension is s0, the density and the kinematic viscosity of the liquid
are r and n, respectively. Suppose that there are no body forces. Two qualitatively di�erent
cases are under study: (i) solute is transferred across the interface toward the gas phases, called
1, (into the bubbles); (ii) solute is transferred across the interfaces toward the liquid layer,
called 2. The transferring substance is either a weakly surface active solute (solutal molecules
consist of short hydrophobic tail and weakly polar hydrophilic head, e.g., acetic acid, ethanol,
acetone etc.) or a very dilute strong surfactant (surfactant molecules consist of long
hydrophobic tail with polar head). In both cases the solute adsorption at the interface is small
and the hindering e�ect on the mobility of the interface is negligible, while it still in¯uencing
the local surface tension. In the latter case, the scale of excess-solute interfacial concentration,
G�0, must satisfy G�0 � G�m, where G�m is the critical micelle concentration. We assume that the
solute mass transfer is controlled by the bulk di�usion in liquid phase and by adsorption±
desorption rate in gas phase; the solute di�usion in the gas is much faster than that in the
liquid. In such cases: d 2=D2

d=k2
, d 2=D2

1=kÿ2
� 1, d 2=D1

d=k1
, d 2=D1

1=kÿ1
� 1 and D2=D1 � 1 where Di are the

solute di�usivities in ith phase, ki and kÿi are the kinetic rates of adsorption and desorption of
solute in ith phase, respectively, and d is the characteristic length of the problem. In phase 2

A.M. Leshansky / International Journal of Multiphase Flow 27 (2001) 189±196190



the mass ¯uxes are controlled by the concentration gradients, while the adsorption±desorption
processes at the interfaces are in local equilibrium. In phase 1 the mass ¯uxes are determined
by the adsorption±desorption rates on the gas side of the interfaces, while the concentration
gradients are negligible due to the fast bulk di�usion (e.g., if acetone, triethylamine or
diethylether desorbs from water into air bubbles, Dair=Dwater010ÿ4). Thus, the excess-solute
interfacial concentration, G�, is proportional to the bulk concentration along the liquid side of
the interface, G�0d2C2 and d20k2=kÿ2:
All physical properties of the ambient ¯uid are assumed to be constant, except for the

surface tension, which depends linearly on the excess-solute interfacial concentration: s � s0�
�@s=@G��0�G� ÿ G0�, where G0 and s0 are reference positive values and �@s=@G��0 < 0 for the
surface-tension-lowering solute. While the excess-solute interfacial concentration is in local
equilibrium with the solute in adjacent liquid sublayers, s0s0 � �@s=@G���d2C2 ÿ G0� � s0 �
s 0�C2ÿC ��:
At the liquid±gas interfaces we assume that the Robin type boundary condition holds in

both cases. In case (i) of solute desorption from the continuous liquid phase into bubbles,

z � 1, 0 : 2D2
@C2

@z
� KG�C1=mÿ C2�, �1�

and in case (ii) of solute adsorption by the continuous liquid phase from the bubbles,

z � 1, 0 : 2D2
@C2

@z
� KG�C1 ÿ C2m�, �2�

where KG is the gas-phase mass transfer coe�cient (Rabinovich and Struchenko, 1993), which
can be attributed to the ®rst-order adsorption±desorption kinetics as KG � kÿ1d2 in case (i) and
as KG � k1 in case (ii); m is Henry's constant and C1 denotes the constant concentration of
solute in the gas phase.
The gas viscosity is ignored and only the ¯ow inside the liquid layer is considered. We scale

length, time, velocity and pressure in units of h0, h
2
0=n, n=h0 and rn2=h2

0 , respectively. In case (i)
we choose the dimensionless concentration of solute in phase 2 as
y � �C2 ÿ C1=m�=�C20 ÿ C1=m�, where C20 is the initial concentration of the surface active
solute in the liquid layer. In case (ii) we de®ne y � �C1=mÿ C2�=�C1=mÿ C20�:
In a quiescent state the mass transfer of solute is controlled by di�usion and in both cases

the governing equations and the boundary conditions for the dimensionless concentration read,

@y0
@t
� 1

Sc
r 2y0 �3�

z � 1, 0 :
@y0
@z

2wSh y0 � 0 �4�

0 < z < 1: y0�z, 0� � 1 �5�
where z and t are, respectively, a dimensionless transverse coordinate and time. The
dimensionless groups of the problem are the Schmidt number Sc � n=D2, the Sherwood
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number Sh � KGh0=D2, w � 1 in case (i) and w � m in case (ii). The solution of this problem is
given by Carslaw and Jaeger (1960)

y0 � 2
X1
n�1

exp
�ÿ a2

n t=Sc
�an cos�anz� � wSh sin�anz�

a2
n � �wSh�2�2wSh

�1
0

ÿ
an cos�ans� � wSh sin�ans�

�
ds �6�

where the coe�cients an are the union of the positive roots of the following equations

a tan a=2ÿ wSh � 0, a cot a=2� wSh � 0 �7�
The dimensionless linearized equations and the boundary conditions (normal and tangential
stress balance, kinematic condition and the solute transfer) governing the development of an
arbitrary in®nitesimal small perturbation for case (i) take the form

@ t@
2
z v� @ t@ 2

xv � @4zv� 2@ 2
z @

2
xv� @4xv, �8�

@ ty� v @ zy0 � 1

Sc

ÿ
@ 2
xy� @ 2

z y
�
, �9�

z � 1, 0 : @ t@zvÿ @3zvÿ 3@z@
2
xv �3�WÿMa y0� @4xh2, �10�

@ 2
xvÿ @ 2

z v �3 Ma
ÿ
@ 2
xy� @zy0 @ 2

xh2

�
, �11�

v � @ th2, �12�

@zy2wSh y �3�wSh @zy02@zzy0�h2, �13�
where x, v, y, h�, hÿ are respectively dimensionless spatial longitudinal coordinate, transverse
velocity, concentration deviation from the conductive state (6) and the distortion of the upper
and lower free surfaces. Ma denotes the Marangoni number: Ma � ÿs 0h0DC=rn2, where DC �
C20 ÿ C1=m and W stands for the crispation number: W � h0�s0 � s 0�C1=mÿ C ���=rn2: The
formulation of problem (ii) is easily obtained from Eqs. (8)±(13) by the substitution Ma4 ÿ
Ma (in case (ii) Ma � ÿs 0h0DC=rn2, where DC � C1=mÿ C20).
Eq. (8) is obtained by, ®rst, taking the rotor of the linearized NS equation to eliminate the

pressure and, second, using the continuity equation to eliminate the x-component of the
velocity; Eq. (9) represents the convection-di�usion equation for the conservation of the solute
concentration disturbance. Eq. (10) is obtained after eliminating the pressure from the normal
stress balance by ®rst, taking an x-derivative and making use of the x-component of the
momentum equation, followed by a second di�erentiation with respect to x and use of the
continuity equation to eliminate the x-component of the velocity. The balance (11) is obtained
after di�erentiating the tangential stress balance with respect to x and using of the continuity
equation to eliminate the x-component of the velocity.
Applying normal mode analysis and expanding all variables in Eqs. (10)±(13) near the

unperturbed boundaries z � 0, 1 yield the eigenvalue problem
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l�V 00 ÿ k2V� � V 0000 ÿ 2 k2V 00 � k4V, �14�

lY� V@zy0 � 1

Sc
�Y 00 ÿ k2Y�, �15�

z � 1, 0 : l V 0 ÿ V 000 � 3k2V 0 �3H2k4�WÿMa y0�, �16�

V 00 � k2V �3Ma k2
ÿ
Y�H2@zy0

�
, �17�

V � lH2, �18�

Y 0 2 wSh Y �3
ÿ
wSh @zy02@ 2

z y0
�
H2 �19�

where V�z�, Y�z�, H� and Hÿ denote the amplitudes of velocity, concentration, upper and
lower boundary perturbations, respectively; l is the perturbation growth rate and k is the
perturbation wavenumber. Prime stands for the di�erentiation with respect to z. Deriving Eqs.
(14)±(19) we have assumed that the reference concentration pro®le (6) changes on a slow time
scale, in other words the time changes in y0 are negligible during the initial stage of
perturbation evolution. Thus we treat the time of disturbance onset, t0, as parameter and
``freeze'' y0 at t0: while the disturbance develops on a fast time scale t. The asymptotic
estimates of a1 are easily obtained from Eq. (7). When wSh� 1 it follows that a10

�����������
2wSh

p
and

when wSh� 1, a10pwSh=�wSh� 2�: Since the present stability analysis is valid for times:
t� Sc=a2

1 , Sc number is usually large (103±104) and a1 is bounded by p from above for any
value of wSh, it follows that ``freezing'' the reference concentration pro®le is justi®ed for rather
wide time range. Such an approach is often applied when the stability of an unsteady reference
state is considered (Dijkstra and van de Vooren, 1985) and leads to an eigenvalue problem
with constant coe�cients.

3. Results and discussion

We ®rst investigate the onset of a stationary instability corresponding to l � 0 in Eqs. (14)±
(19). Solving the Eqs. (14) and (15) in terms of hyperbolic functions and applying the
solvability condition yield the marginal (neutral) stability curves Man �Man�k�: All
calculations are done by the symbolic program Mathematica. Although, we obtained the
expressions for those curves in closed from, they are rather cumbersome and are not given
here. Typical marginal stability curves are plotted in Figs. 1 and 2, for three di�erent reference
times t0 � 2:5, 10, and 50, and some values of parameters W, Sc and wSh: Fig. 1 corresponds
to the case (i) when solute is transferred across the interfaces toward the gas phases, Fig. 2
relates to case (ii), when solute is transferred toward the liquid phase. For the former case (i),
the instability occurs through so called stretching (ST) mode �H� � Hÿ�: In Fig. 1 there is a
range of Ma numbers for which the system is stable to long-wave perturbations and the curve
has a minimum at some ®nite k � kcr�t0�: The asymptotic evaluation of Man in the vicinity of

A.M. Leshansky / International Journal of Multiphase Flow 27 (2001) 189±196 193



k � 0 gives

Man0
2�2� wSh�Wÿ

2y0�2� wSh� ÿ 2y 00 ÿ y 000
�jz�0 �20�

The Man corresponding to marginal stability limit at k40 is an increasing function of t0: This
long-wave deformational instability is driven by local solutal concentration gradients
diminishing with t0 and, as it follows from Eq. (20), the critical value of Marangoni number at

Fig. 1. Neutral stability curves for case (i) Ð solute desorbs into the gas phase, W � 500, Sc � 100 and Sh � 5: The
dashed curve relates to the reference time t0 � 2:5, the dashed-dotted curve to t0 � 10 and the solid curve to t0 � 50:
Domain below the curves is stable �l < 0�, while the instability pertains to the stretching mode.

Fig. 2. Neutral stability curves for case (ii) Ð solute adsorbs by the liquid phase, W � 500, Sc � 100 and
m � Sh � 5: The dashed curve relates to the reference time t0 � 2:5, the dashed-dotted curve to t0 � 10 and the solid
curve to t0 � 50: Domain right to the curves is stable �l < 0�, while the instability pertains to the squeezing mode.
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k40 diverges as t041: For increasing times t0, critical wave number kcr�t0� slightly decreases
while the corresponding Macr�t0� has a minimum which relates to the dash-dotted curve in
Fig. 1. The ®nite wavelength instability gives rise to cellular convection. Initially, when the
changes in y0 occur only near the interfaces, small-scale convection cells will originate high
velocity gradients which result in higher viscous dissipation. So the instability will be retarded
by viscosity. As y0 develops and becomes less steep, the transverse scale of the convection cells
grow and the viscous dissipation diminishes, so the corresponding Macr decreases. At some
time t0cr

, the convective layers, which have been originally formed near the two interfaces
without interaction with each other, merge and the convection sets in the whole liquid sheet.
When t0 > t0cr

the Marangoni e�ect driving the convection diminishes and Macr�t0� increases
(Fig. 1, solid line). For the initial times t0 < t0cr

an observed scenario for the ®nite length-scale
convection is in agreement with previous results of Dijkstra and van de Vooren (1985) who
considered the instability of an undeformed liquid±gas interface between semi-in®nite phases
due to the Marangoni convection. In the latter formulation the corresponding Macr is
monotonic decreasing function of t0, while the wavelength of the most dangerous perturbation
grows. In case (ii) the system looses its stability through a so called squeezing, (SQ) or varicose
mode �H� � ÿHÿ�: The system is unconditionally unstable to the long wavelength
perturbations corresponding to k � 0 for any Ma number (Fig. 2). The latter result is
qualitatively the same as in a similar problem considered by Oron et al. (1995) where a free
deformable liquid sheet exposed to an external temperature gradient is found to be
unconditionally unstable to the long wavelength perturbations. Note, also, that the region of
unstable Ma numbers shrinks as t0 increases. The reason for this is the diminishing of the
Marangoni e�ect driving the instability. When there is no solutal transfer, the liquid sheet
exhibits no instability for all W > 0: It is well known that the long wavelength SQ mode of
instability most directly leads to the ®lm rupture. Let us discuss the relative di�erence in
stability of the two cases to the SQ mode of perturbations on the physical grounds. First,
consider case (i). The SQ perturbation of the interfaces will result in higher concentration of
solute in thicker regions of the sheet and in lower concentration of it in thinner regions of the
sheet due to the solutal transfer across the interfaces toward the gas phases. An induced solute
concentration gradient along the interfaces will set them into motion, and, consequently, liquid
will be dragged into the thinner regions of the liquid sheet and out the thicker regions of the
latter. This ¯ow will retard the deformation the initial deformation. In case (ii) the SQ mode
will give rise to opposite e�ect: the transfer of solute into the liquid phase will result in its
higher concentration in the thin regions of the liquid sheet and its lower concentration in
thicker regions of the liquid sheet. An induced Marangoni ¯ow will enhance the stationary
development of the initial deformation since the liquid will be dragged into the thicker region
and out the thinner region of the liquid sheet. Actually, in case (i) the long wavelength SQ
mode does not lead to instability, while in case (ii) the instability onset occurs at k40 at any
t0 for every ®nite Ma number (see Fig. 2). Thus, the model presented here suggests that the
Marangoni e�ect can be responsible for the relative di�erence in stability of the liquid sheet,
sandwiched between two gas phases, due to the direction of transfer. These results of the linear
stability analysis are in qualitative agreement with experiments on bubble or drop coalescence.
Also, the monotonic increase in long wavelength limit of instability with t0, for case (i) (solute
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is transferred towards the gas phase, see Fig. 1) is in agreement with the stabilizing e�ect of
bubbles' age on coalescence observed by Ueyama et al. (1993).
An oscillatory instability was not found, probably, due to the symmetry of the reference

quiescent state. We believe that there is an overstability in a case of the non-symmetric
reference solute pro®le. An existence of an overstability was shown by Oron et al. (1995) for
the case of an applied external temperature gradient and by Braverman and Nepomniashchy
(1997) for the case of free deformable liquid sheet with uniform exothermic reaction taking
place in it.
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